Add like
Add dislike
Add to saved papers

In silico investigation of factors affecting the MV imaging performance of a novel water-equivalent EPID.

Physica Medica : PM 2016 December
PURPOSE: A Geant4 model of a novel, water-equivalent electronic portal imaging device (EPID) prototype for radiotherapy imaging and dosimetry utilising an array of plastic scintillating fibres (PSFs) has been developed. Monte Carlo (MC) simulations were performed to quantify the PSF-EPID imaging performance and to investigate design aspects affecting performance for optimisation.

METHODS: Using the Geant4 model, the PSF-EPID's imaging performance for 6 MV photon beams was quantified in terms of its modulation transfer function (MTF), noise power spectrum (NPS) and detective quantum efficiency (DQE). Model parameters, including fibre dimensions, optical cladding reflectivity and scintillation yield, were varied to investigate impact on imaging performance.

RESULTS: The MC-calculated DQE(0) for the reference PSF-EPID geometry employing 30mm fibres was approximately nine times greater than values reported for commercial EPIDs. When using 10mm long fibres, the PSF-EPID DQE(0) was still approximately three times greater than that of a commercial EPID. Increased fibre length, cladding reflectivity and scintillation yield produced the greatest decreases in NPS and increases in DQE.

CONCLUSIONS: The potential to develop an optimised next-generation water-equivalent EPID with MV imaging performance at least comparable to commercial EPIDs has been demonstrated. Factors most important for optimising prototype design include fibre length, cladding reflectivity and scintillation yield.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app