Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Bioinspired helical graft with taper to enhance helical flow.

Journal of Biomechanics 2016 November 8
Helical flow has been introduced to improve the hemodynamic performance of vascular devices such as arterial grafts, stents and arteriovenous shunts to overcome the flow induced thrombus formation and intimal hyperplasia. However, the quite low intensity of helical flow in the existing devices may limit their function. To obtain desirably high intensity, inspired by the helical flow and tapered configuration of the arterial system, we proposed a new conceptual design of the medical devices, which take the form of a tapered helical shape. We demonstrated its effectiveness in arterial grafts by numerically comparing the hemodynamic performance of helical grafts with different smooth tapers. The results show that the helicity density quantifying the helical flow enlarges sharply with the increase of the taper under both steady and pulsatile flow conditions. Moreover, the amplified helical flow induced by the taper would lead to highly elevated wall shear stress, remarkably reduced oscillating shear index and relative residence time at both the grafts and the anastomosis of the host vessel. The present findings therefore indicated that the new helical graft with taper would significantly enhance the helical flow in the grafts and host vessel, which may reduce the possibility of thrombus formation in the graft and intimal hyperplasia in the host vessel and hence improve the graft patency. In addition, the concept of helical shape with taper may also be applied to design arterial stents and arteriovenous shunts to obtain better hemodynamic performance.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app