Add like
Add dislike
Add to saved papers

Vibronic coupling to simulate the phosphorescence spectra of Ir(III)-based OLED systems: TD-DFT results meet experimental data.

The electronic and optical properties of six iridium imidazolylidene complexes (1a, 1b, 2, 2b, 3, 3b) that are strong candidates for use in OLED systems were investigated theoretically. Computations using DFT and TD-DFT methods were performed to explain the observed optical properties of these complexes. Observed absorption bands were assigned and the lowest triplet excited states were computed. Whereas complexes 1a and 1b are nonemissive in solution, the simulated phosphorescence spectra of complexes 2, 2b, 3, and 3b were in good agreement with the observed spectra when the vibrational contributions to the electronic transitions were taken into account. The use of vibronic coupling allowed us to reproduce and explain the structured phosphorescence spectra of complexes 2 and 2b, as well as the absence of such structure from the spectra of complexes 3 and 3b. Graphical Abstract Successful simulation of the phosphorescence spectra of Ir(III)-based OLED xsystems.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app