Journal Article
Research Support, Non-U.S. Gov't
Review
Add like
Add dislike
Add to saved papers

Shape matters: the complex relationship between aggregation and toxicity in protein-misfolding diseases.

Essays in Biochemistry 2016 October 16
A particular subgroup of protein-misfolding diseases, comprising Alzheimer's and Parkinson's disease, involves amyloidogenic proteins that can form alternative pathogenic conformations with a high tendency to self-assemble into oligomeric and fibrillar species. Although misfolded proteins have been clearly linked to disease, the exact nature of the toxic species remains highly controversial. Increasing evidence suggests that there is little correlation between the occurrence of macroscopic protein deposits and toxic phenotypes in affected cells and tissues. In this article, we recap amyloid aggregation pathways, describe prion-like propagation, elaborate on detrimental interactions of protein aggregates with the cellular protein quality control system and discuss why some aggregates are toxic, whereas others seem to be beneficial. On the basis of recent studies on prion strains, we reason that the specific aggregate conformation and the resulting individual interaction with the cellular environment might be the major determinant of toxicity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app