Add like
Add dislike
Add to saved papers

Rapid reconstruction of quantitative susceptibility mapping via improved ℓ 0 norm approximation.

Quantitative susceptibility mapping (QSM) reconstruction is a well-known ill-posed problem. Various regularization techniques have been proposed for solving this problem. In this paper, a rapid method is proposed that uses ℓ0 norm minimization in a gradient domain. Because ℓ0 minimization is an NP-hard problem, a special alternating optimization strategy is employed to simplify the reconstruction algorithm. The proposed algorithm uses only simple point-wise multiplications and thresholding operations, and significantly speeds up the calculation. Both numerical simulations and in vivo experiments demonstrate that the proposed method can reconstruct susceptibility fast and accurately. Because morphology information weighted methods have achieved considerable success in QSM, we performed a quantitative comparison with some typical weighted methods, such as MEDI (morphology enabled dipole inversion), iLSQR (improved least squares algorithm), and wℓ1 (weighted ℓ1 norm minimization). The reconstructed results show that the proposed method can provide accurate results with a satisfactory speed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app