Add like
Add dislike
Add to saved papers

Ventilatory oscillations at exercise in hypoxia: A mathematical model.

We evaluated the mechanisms responsible for the instability of ventilation control system under simultaneous metabolic (exercise) and environmental (hypoxia) stresses, promoting the genesis of periodic breathing. A model following the main concepts of ventilatory control has been tested, including cardiovascular and respiratory parameters, characteristics of peripheral and central chemoreceptors, at mild exercise in hypoxia (FIO2 =0.145). Interaction between O2 and CO2 sensing was introduced following three different modalities. A sensitivity and multivariate regression analyses closely matched with physiological data for magnitude and period of oscillations. Low FIO2 and long circulatory delay from lungs to peripheral chemoreceptors (DeltaTp) lengthen the period of oscillations, while high peripheral and central chemoresponses to O2 and CO2 , low FIO2 and high DeltaTp increased their magnitude. Peripheral and central O2 /CO2 interactions highlight the role of CO2 on peripheral gain to O2 and the contribution of peripheral afferences on central gain to CO2 . Our model supports the key role of peripheral chemoreceptors in the genesis of ventilatory oscillations. Differences in the dynamics of central and peripheral components might be determinant for the system stability.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app