Add like
Add dislike
Add to saved papers

Performance investigation of a jet loop membrane bioreactor for the treatment of an actual olive mill wastewater.

In this study, following the pre-treatment of olive mill wastewater (OMW), its treatment in a jet loop membrane bioreactor (JLMBR) was investigated. Among the pre-treatment options, the configuration composed of physical settling, cartridge filter and ceramic membrane showed the best performance in terms of investigated parameters. For the JLMBR that was fed by pretreated OMW, up to 93 and 87% removal efficiencies were achieved for the chemical oxygen demand (COD) and total phenol, respectively, at volumetric organic load (VOL) of 17.8 kg COD/m(3) day. The calculated specific oxygen uptake rate (SOUR) values were in the range 7.7-34.7 g O2/kg MLVSS h. When even hydraulic retention times (HRT) values decreased by a factor of 1:24, system performance in terms of COD and total phenol removal remained almost stable. Decreasing the sludge retention time (SRT) to three days made considerable perturbations for the system performance, increasing the effluent COD and total phenol values in 900 and 80 mg/L, respectively. The JLMBR showed a high overall performance for the treatment of an actual OMW under the evaluated operational conditions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app