Editorial
Research Support, N.I.H., Extramural
Add like
Add dislike
Add to saved papers

Identification of ginkgolide targets in brain by photoaffinity labeling.

Ginkgolides are terpene trilactones in Ginkgo biloba, a popular medicinal herb for memory disorders. Although ginkgolides are known for various neurobiological effects, their macromolecular target in brain is unknown. In this work, we employed benzophenone derivatives of ginkgolides to identify their binding target in brain. Photolabeling of bovine hippocampus homogenates identified a series of α-tubulin isotypes. Selective photolabeling of α-tubulin over β-tubulin, which is equally abundant in brain, suggested that ginkgolides might modulate microtubule biology differently than typical microtubule-binding agents, such as taxol. In fact, ginkgolide A did not affect microtubule polymerization or cell proliferation; instead, it inhibited detyrosination of α-tubulin and reorientation of microtubule-organizing centers. Taken together, the current findings indicate that ginkgolides constitute a new class of microtubule-binding agents with distinct effects on α-tubulin biology.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app