Add like
Add dislike
Add to saved papers

Generation of improved human cerebral organoids from single copy DYRK1A knockout induced pluripotent stem cells in trisomy 21: hypothetical solutions for neurodevelopmental models and therapeutic alternatives in down syndrome.

Dual-specificity thyrosine phosphorylation-regulated kinase 1A (DYRK1A) is a strong therapeutic target to ameliorate cognitive functions of Down Syndrome (DS). Genetic normalization of Dyrk1a is sufficient to normalize early cortical developmental phenotypes in DS mouse models. Gyrencephalic human neocortical development is more complex than that in lissencephalic mice; hence, cerebral organoids (COs) can be used to model early neurodevelopmental defects of DS. Single copy DYRK1A knockout COs (scDYRK1AKO-COs) can be generated from manipulated DS derived (DS-) induced pluripotent stem cells (iPSCs) and genetic normalization of DYRK1A is expected to result in corrected neurodevelopmental phenotypes that can be reminiscent of normal COs. DYRK1A knock-in (DYRK1AKI) COs can be derived after genetic manipulations of normal iPSCs and would be valuable to evaluate impaired neocortical development as can be seen in DS-COs. DYRK1A mutations cause severe human primary microcephaly; hence, dose optimization studies of DYRK1A inhibitors will be critical for prenatal therapeutic applications in DS. Several doses of DYRK1A inhibitors can be tested in the neurodevelopment process of DS-COs and DS-scDYRK1AKO-COs would be used as optimum models for evaluating phenotypic ameliorations. Overdose drug exposure in DS-COs can be explained by similar defects present in DS-baDYRK1AKO-COs and DYRK1AKO-COs. There are several limitations in the current CO technology, which can be reduced by the generation of vascularized brain-like organoids giving opportunities to mimic late-stage corticogenesis and complete hippocampal development. In the future, improved DS-DYRK1AKO-COs can be efficient in studies that aim to generate efficiently transplantable and implantable neurons for tissue regeneration alternatives in DS individuals.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app