Add like
Add dislike
Add to saved papers

MMP inhibitor Ilomastat induced amoeboid-like motility via activation of the Rho signaling pathway in glioblastoma cells.

Matrix metalloproteinases (MMPs) play the important role in the process of glioblastoma cell invasion through 3D matrices. However, the effects of MMP inhibitors used in the treatment of malignant gliomas are unsatisfactory. The aim of this study was to explore the reason and mechanism by which cells move through the dense extracellular matrix without proteolysis. The results showed that MMP inhibitor (MMPI), Ilomastat, induced glioma cells to have an amoeboid-like morphology with invasive ability. Moreover, the RhoA/Rho kinase (ROCK)/myosin light chain (MLC) signal is involved in the MMPI-induced movement mode switch, and RhoA activation is dependent on P115RhoGEF. Importantly, combined inhibition of MMPs and ROCK enhanced the inhibition invasion function of MMPI and increased survival time in vitro and in vivo. The results suggested that glioma cells with MMPI treatment were able to compensate for the loss of invasive proteolysis-dependent migration capacity by acquiring an amoeboid-like migration mode and indicated that the combined MMP inhibitor and ROCK inhibitor can be used as an attractive antitumor drug candidate for the treatment of GBM.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app