Add like
Add dislike
Add to saved papers

RAD51 regulates CHK1 stability via autophagy to promote cell growth in esophageal squamous carcinoma cells.

The serine/threonine protein kinase CHK1 has been reported to bind to the recombinase RAD51 and facilitates its assembly in DNA damage sites via phosphorylation. However, the role of RAD51 in regulating the expression of CHK1 has never been explored. Here, we show that RAD51 is highly upregulated in esophageal squamous tumor tissues and its DMC1 domain significantly promotes cell growth of esophageal cancer (EC) cells through CHK1. To gain the mechanistic insights, firstly, in the presence of 3-methyladenine (3MA), an autophagy inhibitor, we found that the reduction of CHK1 and the inhibition of cell growth in RAD51-deficient EC109 cells were strikingly restored. Subsequently, the autophagy-related experiments revealed that RAD51 negatively participated in autophagy. Moreover, results from in vitro clonogenic survival assays showed that RAD51 depletion greatly enabled EC cells to resist the autophagy inhibitors 3MA and hydroxychloroquine (HCQ) treatments. Above all, our studies firstly highlight a direct role of RAD51 in autophagy process and characterize its functional domain in cell growth regulation. Moreover, our data firstly shed insights into the possible application of autophagy inhibitors in treating RAD51 overexpressed EC patients.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app