Add like
Add dislike
Add to saved papers

The TORC1-activated Proteins, p70S6K and GRB10, Regulate IL-4 Signaling and M2 Macrophage Polarization by Modulating Phosphorylation of Insulin Receptor Substrate-2.

Lung M2 macrophages are regulators of airway inflammation, associated with poor lung function in allergic asthma. Previously, we demonstrated that IL-4-induced M2 gene expression correlated with tyrosine phosphorylation of the insulin receptor substrate-2 (IRS-2) in macrophages. We hypothesized that negative regulation of IRS-2 activity after IL-4 stimulation is dependent upon serine phosphorylation of IRS-2. Herein, we describe an inverse relationship between tyrosine phosphorylation (Tyr(P)) and serine phosphorylation (Ser(P)) of IRS-2 after IL-4 stimulation. Inhibiting serine phosphatase activity increased Ser(P)-IRS-2 and decreased Tyr(P)-IRS-2 leading to reduced M2 gene expression (CD200R, CCL22, MMP12, and TGM2). We found that inhibition of p70S6K, downstream of TORC1, resulted in diminished Ser(P)-IRS-2 and prolonged Tyr(P)-IRS-2 as well. Inhibition of p70S6K increased expression of CD200R and CCL22 indicating that p70S6K negatively regulates some, but not all, human M2 genes. Knocking down GRB10, another negative regulatory protein downstream of TORC1, enhanced both Tyr(P)-IRS-2 and increased expression of all four M2 genes. Furthermore, GRB10 associated with IRS-2, NEDD4.2 (an E3-ubiquitin ligase), IL-4Rα, and γC after IL-4 stimulation. Both IL-4Rα and γC were ubiquitinated after 30 min of IL-4 treatment, suggesting that GRB10 may regulate degradation of the IL-4 receptor-signaling complex through interactions with NEDD4.2. Taken together, these data highlight two novel regulatory proteins that could be therapeutically manipulated to limit IL-4-induced IRS-2 signaling and polarization of M2 macrophages in allergic inflammation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app