JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Pleuromutilins: Potent Drugs for Resistant Bugs-Mode of Action and Resistance.

Pleuromutilins are antibiotics that selectively inhibit bacterial translation and are semisynthetic derivatives of the naturally occurring tricyclic diterpenoid pleuromutilin, which received its name from the pleuromutilin-producing fungus Pleurotus mutilus Tiamulin and valnemulin are two established derivatives in veterinary medicine for oral and intramuscular administration. As these early pleuromutilin drugs were developed at a time when companies focused on major antibacterial classes, such as the β-lactams, and resistance was not regarded as an issue, interest in antibiotic research including pleuromutilins was limited. Over the last decade or so, there has been a resurgence in interest to develop this class for human use. This has resulted in a topical derivative, retapamulin, and additional derivatives in clinical development. The most advanced compound is lefamulin, which is in late-stage development for the intravenous and oral treatment of community-acquired bacterial pneumonia and acute bacterial skin infections. Overall, pleuromutilins and, in particular, lefamulin are characterized by potent activity against Gram-positive and fastidious Gram-negative pathogens as well as against mycoplasmas and intracellular organisms, such as Chlamydia spp. and Legionella pneumophila Pleuromutilins are unaffected by resistance to other major antibiotic classes, such as macrolides, fluoroquinolones, tetracyclines, β-lactam antibiotics, and others. Furthermore, pleuromutilins display very low spontaneous mutation frequencies and slow, stepwise resistance development at sub-MIC in vitro. The potential for resistance development in clinic is predicted to be slow as confirmed by extremely low resistance rates to this class despite the use of pleuromutilins in veterinary medicine for >30 years. Although rare, resistant strains have been identified in human- and livestock-associated environments and as with any antibiotic class, require close monitoring as well as prudent use in veterinary medicine. This review focuses on the structural characteristics, mode of action, antibacterial activity, and resistance development of this potent and novel antibacterial class for systemic use in humans.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app