JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Microbial N Transformations and N2O Emission after Simulated Grassland Cultivation: Effects of the Nitrification Inhibitor 3,4-Dimethylpyrazole Phosphate (DMPP).

Grassland cultivation can mobilize large pools of N in the soil, with the potential for N leaching and N2 O emissions. Spraying with the nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) before cultivation was simulated by use of soil columns in which the residue distribution corresponded to plowing or rotovation to study the effects of soil-residue contact on N transformations. DMPP was sprayed on aboveground parts of ryegrass and white clover plants before incorporation. During a 42-day incubation, soil mineral N dynamics, potential ammonia oxidation (PAO), denitrifying enzyme activity (DEA), nitrifier and denitrifier populations, and N2 O emissions were investigated. The soil NO3 - pool was enriched with 15 N to trace sources of N2 O. Ammonium was rapidly released from decomposing residues, and PAO was stimulated in soil near residues. DMPP effectively reduced NH4 + transformation irrespective of residue distribution. Ammonia-oxidizing archaea (AOA) and bacteria (AOB) were both present, but only the AOB amoA transcript abundance correlated with PAO. DMPP inhibited the transcription of AOB amoA genes. Denitrifier genes and transcripts (nirK, nirS, and clades I and II of nosZ) were recovered, and a correlation was found between nirS mRNA and DEA. DMPP showed no adverse effects on the abundance or activity of denitrifiers. The 15 N enrichment of N2 O showed that denitrification was responsible for 80 to 90% of emissions. With support from a control experiment without NO3 - amendment, it was concluded that DMPP will generally reduce the potential for leaching of residue-derived N, whereas the effect of DMPP on N2 O emissions will be significant only when soil NO3 - availability is limiting.

IMPORTANCE: Residue incorporation following grassland cultivation can lead to mobilization of large pools of N and potentially to significant N losses via leaching and N2 O emissions. This study proposed a mitigation strategy of applying 3,4-dimethylpyrazole phosphate (DMPP) prior to grassland cultivation and investigated its efficacy in a laboratory incubation study. DMPP inhibited the growth and activity of ammonia-oxidizing bacteria but had no adverse effects on ammonia-oxidizing archaea and denitrifiers. DMPP can effectively reduce the potential for leaching of NO3 - derived from residue decomposition, while the effect on reducing N2 O emissions will be significant only when soil NO3 - availability is limiting. Our findings provide insight into how DMPP affects soil nitrifier and denitrifier populations and have direct implications for improving N use efficiency and reducing environmental impacts during grassland cultivation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app