CASE REPORTS
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Pathogenic variants in KCTD7 perturb neuronal K+ fluxes and glutamine transport.

Brain 2016 December
Progressive myoclonus epilepsy is a heterogeneous group of disorders characterized by myoclonic and tonic-clonic seizures, ataxia and cognitive decline. We here present two affected brothers. At 9 months of age the elder brother developed ataxia and myoclonic jerks. In his second year he lost the ability to walk and talk, and he developed drug-resistant progressive myoclonus epilepsy. The cerebrospinal fluid level of glutamate was decreased while glutamine was increased. His younger brother manifested similar symptoms from 6 months of age. By exome sequencing of the proband we identified a novel homozygous frameshift variant in the potassium channel tetramerization domain 7 (KCTD7) gene (NM_153033.1:c.696delT: p.F232fs), which results in a truncated protein. The identified F232fs variant is inherited in an autosomal recessive manner, and the healthy consanguineous parents carry the variant in a heterozygous state. Bioinformatic analyses and structure modelling showed that KCTD7 is a highly conserved protein, structurally similar to KCTD5 and several voltage-gated potassium channels, and that it may form homo- or heteromultimers. By heterologous expression in Xenopus laevis oocytes, we demonstrate that wild-type KCTD7 hyperpolarizes cells in a K+ dependent manner and regulates activity of the neuronal glutamine transporter SAT2 (Slc38a2), while the F232fs variant impairs K+ fluxes and obliterates SAT2-dependent glutamine transport. Characterization of four additional disease-causing variants (R94W, R184C, N273I, Y276C) bolster these results and reveal the molecular mechanisms involved in the pathophysiology of KCTD7-related progressive myoclonus epilepsy. Thus, our data demonstrate that KCTD7 has an impact on K+ fluxes, neurotransmitter synthesis and neuronal function, and that malfunction of the encoded protein may lead to progressive myoclonus epilepsy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app