Add like
Add dislike
Add to saved papers

Influence of enhancing electrolytes on the removal efficiency of heavy metals from Gabes marine sediments (Tunisia).

Marine Pollution Bulletin 2016 December 16
This study focused on the feasibility of the treatment of heavy metals-contaminated sediments from Gabes harbor (Tunisia) using enhanced electrokinetic process. It presented a laboratory short-time electrokinetic experiment. The enhancing agents, as citric, acetic acids and sodium dodecyl sulfate (SDS) were used regarding their low environmental hazard. The electrokinetic cell was specially designed in order to elaborate two experiments at the same time. This paper is composed of three parts. The first part introduces the characterization of Gabes sediments. The second part describes the design of laboratory electrokinetic cell and the followed methods. The third part is dedicated to the results analysis. Treatment efficiency revealed that more than 80% of lead was removed from Gabes marine sediments. The reduction of cooper concentration, in sediments after treatment, ranged from 74 to 87%. Despite, the high removal of cadmium that ranged from 58 to 79%, treated sediments presented Cd concentration above the threshold limit.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app