Add like
Add dislike
Add to saved papers

Transient Global Amnesia Deteriorates the Network Efficiency of the Theta Band.

Acute perturbation of the hippocampus, one of the connector hubs in the brain, is a key step in the pathophysiological cascade of transient global amnesia (TGA). We tested the hypothesis that network efficiency, meaning the efficiency of information exchange over a network, is impaired during the acute stage of TGA. Graph theoretical analysis was applied to resting-state EEG data collected from 21 patients with TGA. The EEG data were obtained twice, once during the acute stage (< 24 hours after symptom onset) and once during the resolved stage (> 2 months after symptom onset) of TGA. Characteristic path lengths and clustering coefficients of functional networks constructed using phase-locking values were computed and normalized as a function of the degree in the delta, theta, alpha, beta 1, beta 2 and gamma frequency bands of the EEG. We investigated whether the normalized characteristic path length (nCPL) and normalized clustering coefficients (nCC) differed significantly between the acute and resolved stages of TGA at each frequency band using the Wilcoxon signed-rank test. For networks where the nCPL or nCC differed significantly between the two stages, we also evaluated changes in the connections of the brain networks. During the acute stage of TGA, the nCPL of the theta band networks with mean degrees of 8, 8.5, 9 and 9.5 significantly increased (P < 0.05). During the acute stage, the lost edges for these networks were mostly found between the anterior (frontal and anterior temporal) and posterior (parieto-occipital and posterior temporal) brain regions, whereas newly developed edges were primarily found between the left and right frontotemporal regions. The nCC of the theta band with a mean degree of 5.5 significantly decreased during the acute stage (P < 0.05). Our results indicate that TGA deteriorates the network efficiency of the theta frequency band. This effect might be related to the desynchronization between the anterior and posterior brain areas.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app