Add like
Add dislike
Add to saved papers

Ultrafast Emission and Detection of a Single-Electron Gaussian Wave Packet: A Theoretical Study.

Physical Review Letters 2016 September 31
Generating and detecting a prescribed single-electron state is an important step towards solid-state fermion optics. We propose how to generate an electron in a Gaussian state, using a quantum-dot pump with gigahertz operation and realistic parameters. With the help of a strong magnetic field, the electron occupies a coherent state in the pump, insensitive to the details of nonadiabatic evolution. The state changes during the emission from the pump, governed by competition between the Landauer-Buttiker traversal time and the passage time. When the former is much shorter than the latter, the emitted state is a Gaussian wave packet. The Gaussian packet can be identified by using a dynamical potential barrier, with a resolution reaching the Heisenberg minimal uncertainty ℏ/2.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app