Add like
Add dislike
Add to saved papers

Neural Network-Based Adaptive Leader-Following Consensus Control for a Class of Nonlinear Multiagent State-Delay Systems.

Compared with the existing neural network (NN) or fuzzy logic system (FLS) based adaptive consensus methods, the proposed approach can greatly alleviate the computation burden because it needs only to update a few adaptive parameters online. In the multiagent agreement control, the system uncertainties derive from the unknown nonlinear dynamics are counteracted by employing the adaptive NNs; the state delays are compensated by designing a Lyapunov-Krasovskii functional. Finally, based on Lyapunov stability theory, it is demonstrated that the proposed consensus scheme can steer a multiagent system synchronizing to the predefined reference signals. Two simulation examples, a numerical multiagent system and a practical multimanipulator system, are carried out to further verify and testify the effectiveness of the proposed agreement approach.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app