Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Predicting Protein-DNA Binding Residues by Weightedly Combining Sequence-Based Features and Boosting Multiple SVMs.

Protein-DNA interactions are ubiquitous in a wide variety of biological processes. Correctly locating DNA-binding residues solely from protein sequences is an important but challenging task for protein function annotations and drug discovery, especially in the post-genomic era where large volumes of protein sequences have quickly accumulated. In this study, we report a new predictor, named TargetDNA, for targeting protein-DNA binding residues from primary sequences. TargetDNA uses a protein's evolutionary information and its predicted solvent accessibility as two base features and employs a centered linear kernel alignment algorithm to learn the weights for weightedly combining the two features. Based on the weightedly combined feature, multiple initial predictors with SVM as classifiers are trained by applying a random under-sampling technique to the original dataset, the purpose of which is to cope with the severe imbalance phenomenon that exists between the number of DNA-binding and non-binding residues. The final ensembled predictor is obtained by boosting the multiple initially trained predictors. Experimental simulation results demonstrate that the proposed TargetDNA achieves a high prediction performance and outperforms many existing sequence-based protein-DNA binding residue predictors. The TargetDNA web server and datasets are freely available at https://csbio.njust.edu.cn/bioinf/TargetDNA/ for academic use.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app