Add like
Add dislike
Add to saved papers

Diverging Wave Volumetric Imaging Using Subaperture Beamforming.

Several clinical settings could benefit from 3-D high frame rate (HFR) imaging and, in particular, HFR 3-D tissue Doppler imaging (TDI). To date, the proposed methodologies are based mostly on experimental ultrasound platforms, making their translation to clinical systems nontrivial as these have additional hardware constraints. In particular, clinically used 2-D matrix array transducers rely on subaperture (SAP) beamforming to limit cabling between the ultrasound probe and the back-end console. Therefore, this paper is aimed at assessing the feasibility of HFR 3-D TDI using diverging waves (DWs) on a clinical transducer with SAP beamforming limitations. Simulation studies showed that the combination of a single DW transmission with SAP beamforming results in severe imaging artifacts due to grating lobes and reduced penetration. Interestingly, a promising tradeoff between image quality and frame rate was achieved for scan sequences with a moderate number of transmit beams. In particular, a sparse sequence with nine transmissions showed good imaging performance for an imaging sector of 70 (°)×70 (°) at volume rates of approximately 600 Hz. Subsequently, this sequence was implemented in a clinical system and TDI was recorded in vivo on healthy subjects. Velocity curves were extracted and compared against conventional TDI (i.e., with focused transmit beams). The results showed similar velocities between both beamforming approaches, with a cross-correlation of 0.90 ± 0.11 between the traces of each mode. Overall, this paper indicates that HFR 3-D TDI is feasible in systems with clinical 2-D matrix arrays, despite the limitations of SAP beamforming.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app