Add like
Add dislike
Add to saved papers

Granular core phenomenon induced by convection in a vertically vibrated cylindrical container.

Physical Review. E 2016 September
A mixture of 13X molecular sieve (13XMS) particles and glass particles with identical diameters is placed in a cylindrical container. Under vertical vibration, heavier glass particles tend to cluster and are wrapped inside the convection of 13XMS particles, resulting in the granular core phenomenon. The vibration frequency f strongly influences particle convection and particle cluster modes. By contrast, the effect of the dimensionless acceleration amplitude Γ can be neglected. For different f ranges, the granular core is classified as center-type and ring-type cores. For the center-type core, heavy particles are distributed as an approximate zeroth-order Bessel function of the first kind in the radial direction and an exponential function in the height direction. For the ring-type core, the concentration of heavy particles follows the power-series function in the radial direction. A granular transport model is then established based on heavy-particle movements under steady state to analyze the effect of vibration parameters and granular convection on density segregation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app