Add like
Add dislike
Add to saved papers

Dynamical phase transition in large-deviation statistics of the Kardar-Parisi-Zhang equation.

Physical Review. E 2016 September
We study the short-time behavior of the probability distribution P(H,t) of the surface height h(x=0,t)=H in the Kardar-Parisi-Zhang (KPZ) equation in 1+1 dimension. The process starts from a stationary interface: h(x,t=0) is given by a realization of two-sided Brownian motion constrained by h(0,0)=0. We find a singularity of the large deviation function of H at a critical value H=H_{c}. The singularity has the character of a second-order phase transition. It reflects spontaneous breaking of the reflection symmetry x↔-x of optimal paths h(x,t) predicted by the weak-noise theory of the KPZ equation. At |H|≫|H_{c}| the corresponding tail of P(H) scales as -lnP∼|H|^{3/2}/t^{1/2} and agrees, at any t>0, with the proper tail of the Baik-Rains distribution, previously observed only at long times. The other tail of P scales as -lnP∼|H|^{5/2}/t^{1/2} and coincides with the corresponding tail for the sharp-wedge initial condition.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app