Add like
Add dislike
Add to saved papers

Optimization of noise-induced synchronization of oscillator networks.

Physical Review. E 2016 September
We investigate common-noise-induced synchronization between two identical networks of coupled phase oscillators exhibiting fully locked collective oscillations. Using the collective phase description method for fully locked oscillators, we demonstrate that two noninteracting networks of coupled phase oscillators can exhibit in-phase synchronization between the networks when driven by weak common noise. We derive the Lyapunov exponent characterizing the relaxation time for synchronization and develop a method of obtaining the optimal input pattern of common noise to achieve fast synchronization. We illustrate the theory using three representative networks with heterogeneous, global, and local coupling. The theoretical results are validated by direct numerical simulations.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app