Add like
Add dislike
Add to saved papers

Activated Müller Cells Involved in ATP-Induced Upregulation of P2X 7 Receptor Expression and Retinal Ganglion Cell Death.

P2X7 receptor (P2X7 R), an ATP-gated ion channel, plays an important role in glaucomatous retinal ganglion cell (RGC) apoptotic death, in which activated retinal Müller glial cells may be involved by releasing ATP. In the present study, we investigated whether and how activated Müller cells may induce changes in P2X7 R expression in RGCs by using immunohistochemistry and Western blot techniques. Intravitreal injection of DHPG, a group I metabotropic glutamate receptor (mGluR I) agonist, induced upregulation of GFAP expression, suggestive of Müller cell activation (gliosis), as we previously reported. Accompanying Müller cell activation, P2X7 R protein expression was upregulated, especially in the cells of ganglion cell layer (GCL), which was reversed by coinjection of brilliant blue G (BBG), a P2X7 R blocker. In addition, intravitreal injection of ATP also induced upregulation of P2X7 R protein expression. Similar results were observed in cultured retinal neurons by ATP treatment. Moreover, both DHPG and ATP intravitreal injection induced a reduction in the number of fluorogold retrogradely labeled RGCs, and the DHPG effect was partially rescued by coinjection of BBG. All these results suggest that activated Müller cells may release ATP and, in turn, induce upregulation of P2X7 R expression in the cells of GCL, thus contributing to RGC death.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app