Add like
Add dislike
Add to saved papers

Potential L-Type Voltage-Operated Calcium Channel Blocking Effect of Drotaverine on Functional Models.

Drotaverine is considered an inhibitor of cyclic-3',5'-nucleotide-phophodiesterase (PDE) enzymes; however, published receptor binding data also support the potential L-type voltage- operated calcium channel (L-VOCC) blocking effect of drotaverine. Hence, in this work, we focus on the potential L-VOCC blocking effect of drotaverine by using L-VOCC-associated functional in vitro models. Accordingly, drotaverine and reference agents were tested on KCl-induced guinea pig tracheal contraction. Drotaverine, like the L-VOCC blockers nifedipine or diltiazem, inhibited the KCl-induced inward Ca(2+)- induced contraction in a concentration- dependent fashion. The PDE inhibitor theophylline had no effect on the KCl-evoked contractions, indicating its lack of inhibition on inward Ca(2+) flow. Drotaverine was also tested on the L-VOCC-mediated resting Ca(2+) refill model. In this model, the extracellular Ca(2+) enters the cells to replenish the emptied intracellular Ca(2+) stores. Drotaverine and L-VOCC blocker reference molecules inhibited Ca(2+) replenishment of Ca(2+)-depleted preparations detected by agonist-induced contractions in post-Ca(2+) replenishment Ca(2+)-free medium. Theophylline did not modify the Ca(2+) store replenishment after contraction. It seems that drotaverine, but not theophylline, inhibits inward Ca(2+) flux. The addition of CaCl2 to Ca(2+)-free medium containing the agonist induced inward Ca(2+) flow and subsequent contraction of Ca(2+)-depleted tracheal preparations. Drotaverine, similar to the L-VOCC blockers, inhibited inward Ca(2+) flow and blunted the slope of CaCl2-induced contraction in agonist containing Ca(2+)-free medium with Ca(2+)-depleted tracheal preparations. These results show that drotaverine behaves like L-VOCC blockers but, unlike PDE inhibitors using L-VOCC associated in vitro experimental models.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app