Add like
Add dislike
Add to saved papers

In vivo voltage-sensitive dye imaging of the insular cortex in nerve-injured rats.

Neuroscience Letters 2016 November 11
The insular cortex (IC) is a pain-related brain region that receives various types of sensory input and processes the emotional aspects of pain. The present study was conducted to investigate spatiotemporal patterns related to neuroplastic changes in the IC after nerve injury using voltage-sensitive dye imaging. The tibial and sural nerves of rats were injured under pentobarbital anesthesia. To observe optical signals in the IC, rats were re-anesthetized with urethane 7days after injury, and a craniectomy was performed to allow for optical imaging. Optical signals of the IC were elicited by peripheral electrical stimulation. Neuropathic rats showed a significantly higher optical intensity following 5.0mA electrical stimulation compared to sham-injured rats. A larger area of activation was observed by 1.25 and 2.5mA electrical stimulation compared to sham-injured rats. The activated areas tended to be larger, and the peak amplitudes of optical signals increased with increasing stimulation intensity in both groups. These results suggest that the elevated responsiveness of the IC to peripheral stimulation is related to neuropathic pain, and that neuroplastic changes are likely to be involved in the IC after nerve injury.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app