Add like
Add dislike
Add to saved papers

An HIV-1 capsid binding protein TRIM11 accelerates viral uncoating.

Retrovirology 2016 October 14
BACKGROUND: Several members of the TRIM family have been implicated in antiviral defense. Our previous report showed that human TRIM11 potently inhibited HIV-1 transduction by reducing the viral reverse transcripts. These results prompted us to examine the effect of TRIM11 on HIV-1 uncoating, which is closely related to viral reverse transcription.

RESULTS: Using a combination of in vitro binding and in situ proximity ligation assay, we showed that TRIM11 could interact with HIV-1 capsid. Overexpression of TRIM11 accelerates HIV-1 uncoating and reduces viral reverse transcription indicated by the fate-of-capsid assay and quantitative PCR respectively. Knockdown of TRIM11 enhanced HIV-1 capsid stability and increased viral reverse transcription. However, the replication of another retrovirus MLV is not affected by TRIM11. Moreover, the reverse transcription of HIV-1 mutant bearing capsid G89V showed insensitivity to restriction by TRIM11, indicating that the viral determinant of restriction by TRIM11 might reside on capsid. Using microtubule dynamics inhibitors, we revealed that microtubule dynamics contributes to TRIM11-mediated HIV-1 capsid premature disassembly and the reduction of reverse transcription levels. Finally, we demonstrated that TRIM11 inhibits HIV-1 transduction and accelerates viral uncoating in HIV-1 permissive THP-1-derived macrophages.

CONCLUSIONS: We identify TRIM11 as a new HIV-1 capsid binding protein. Our data also reveal that TRIM11 restricts HIV-1 reverse transcription by accelerating viral uncoating, and microtubule dynamics is implicated in TRIM11-imposed block to early events of HIV-1 replication.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app