JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Enzymes as Biodevelopers for Nano- And Micropatterned Bicomponent Biopolymer Thin Films.

Biomacromolecules 2016 November 15
The creation of nano- and micropatterned polymer films is a crucial step for innumerous applications in science and technology. However, there are several problems associated with environmental aspects concerning the polymer synthesis itself, cross-linkers to induce the patterns as well as toxic solvents used for the preparation and even more important development of the films (e.g., chlorobenzene). In this paper, we present a facile method to produce micro- and nanopatterned biopolymer thin films using enzymes as so-called biodevelopers. Instead of synthetic polymers, naturally derived ones are employed, namely, poly-3-hydroxybutyrate and a cellulose derivative, which are dissolved in a common solvent in different ratios and subjected to spin coating. Consequently, the two biopolymers undergo microphase separation and different domain sizes are formed depending on the ratio of the biopolymers. The development step proceeds via addition of the appropriate enzyme (either PHB-depolymerase or cellulase), whereas one of the two biopolymers is selectively degraded, while the other one remains on the surface. In order to highlight the enzymatic development of the films, video AFM studies have been performed in real time to image the development process in situ as well as surface plasmon resonance spectroscopy to determine the kinetics. These studies may pave the way for the use of enzymes in patterning processes, particularly for materials intended to be used in a physiological environment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app