Add like
Add dislike
Add to saved papers

The DEAD-Box RNA Helicase DDX3 Interacts with NF-κB Subunit p65 and Suppresses p65-Mediated Transcription.

RNA helicase family members exhibit diverse cellular functions, including in transcription, pre-mRNA processing, RNA decay, ribosome biogenesis, RNA export and translation. The RNA helicase DEAD-box family member DDX3 has been characterized as a tumour-associated factor and a transcriptional co-activator/regulator. Here, we demonstrate that DDX3 interacts with the nuclear factor (NF)-κB subunit p65 and suppresses NF-κB (p65/p50)-mediated transcriptional activity. The downregulation of DDX3 by RNA interference induces the upregulation of NF-κB (p65/p50)-mediated transcription. The regulation of NF-κB (p65/p50)-mediated transcriptional activity was further confirmed by the expression levels of its downstream cytokines, such as IL-6 and IL-8. Moreover, the binding of the ATP-dependent RNA helicase domain of DDX3 to the N-terminal Rel homology domain (RHD) of p65 is involved in the inhibition of NF-κB-regulated gene transcription. In summary, the results suggest that DDX3 functions to suppress the transcriptional activity of the NF-κB subunit p65.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app