Add like
Add dislike
Add to saved papers

Refinement of the HIVAN1 Susceptibility Locus on Chr. 3A1-A3 via Generation of Sub-Congenic Strains.

HIV-1 transgenic mice on the FVB/NJ background (TgFVB) represent a validated model of HIV-associated nephropathy (HIVAN). A major susceptibility locus, HIVAN1, was previously mapped to chromosome 3A1-A3 in a cross between TgFVB and CAST/EiJ (CAST) strains, and introgression of a 51.9 Mb segment encompassing HIVAN1 from CAST into TgFVB resulted in accelerated development of nephropathy. We generated three sub-congenic strains carrying CAST alleles in the proximal or distal regions of the HIVAN1 locus (Sub-II, 3.02-38.93 Mb; Sub-III, 38.45-55.1 Mb and Sub-IV, 47.7-55.1 Mb, build 38). At 5-10 weeks of age, histologic injury and proteinuria did not differ between HIV-1 transgenic Sub-II and TgFVB mice. In contrast, HIV-1 transgenic Sub-III and Sub-IV mice displayed up to 4.4 fold more histopathologic injury and 6-fold more albuminuria compared to TgFVB mice, similar in severity to the full-length congenic mice. The Sub-IV segment defines a maximal 7.4 Mb interval for HIVAN1, and encodes 31 protein coding genes: 15 genes have missense variants differentiating CAST from FVB, and 14 genes show differential renal expression. Of these, Frem1, Foxo1, and Setd7 have been implicated in the pathogenesis of nephropathy. HIVAN1 congenic kidneys are histologically normal without the HIV-1 transgene, yet their global transcriptome is enriched for molecular signatures of apoptosis, adenoviral infection, as well as genes repressed by histone H3 lysine 27 trimethylation, a histone modification associated with HIV-1 life cycle. These data refine HIVAN1to 7.4 Mb and identify latent molecular derangements that may predispose to nephropathy upon exposure to HIV-1.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app