Add like
Add dislike
Add to saved papers

Atmospheric fate of hydrofluoroolefins, CxF2x+1CHCH2 (x = 1,2,3,4 and 6): Kinetics with Cl atoms and products.

Chemosphere 2017 January
Rate coefficients for the gas-phase reactions of CxF2x+1CHCH2 (x = 1, 2, 3, 4 and 6) with Cl atoms were determined at (298 ± 2) K and (710 ± 5) Torr of air using a relative rate technique. Two experimental setups with simulation chambers were employed with Fourier Transform Infrared (FTIR) spectroscopy and Gas Chromatography coupled to Mass Spectrometry (GC-MS) as detection techniques. The Cl-rate coefficients obtained were (in 10(-10) cm(3) molecule(-1) s(-1)): (0.85 ± 0.11) for CF3CHCH2, (1.11 ± 0.08) for C2F5CHCH2, (1.12 ± 0.18) for C3F7CHCH2, (0.97 ± 0.09) for C4F9CHCH2, and (0.99 ± 0.08) for C6F13CHCH2. Additionally, the gas-phase products were identified and quantified, when possible, by FTIR spectroscopy or GC-MS. The main reaction product was reported to be CxF2x+1C(O)CH2Cl. The fluorinated species, CxF2x+1CHO and CxF2x+1C(O)CH2Cl, were identified. CF3C(O)CH2Cl and CF3CHO were found to be formed with molar yield of (69 ± 5)% and (9 ± 1)%, respectively. The global lifetime of the investigated CxF2x+1CHCH2 due to their Cl-reaction is more than 100 days so this route does not compete with the removal by OH radicals. This lifetime is long enough for CxF2x+1CHCH2 to be transported to remote areas where they can be degraded. However, at a local scale, in marine regions at dawn the removal of CxF2x+1CHCH2 is expected to occur in ca. 1 day. The atmospheric degradation of these hydrofluoroolefins by Cl atoms is not expected to be a source of bioaccumulative perfluorinated carboxylic acids, CxF2x+1C(O)OH. Additionally, the UV absorption cross sections of CF3C(O)CH2Cl were determined together with the rate coefficient of the OH reaction by an absolute kinetic method at room temperature.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app