Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Blockade of IL-7Rα alleviates collagen-induced arthritis via inhibiting Th1 cell differentiation and CD4 + T cell migration.

Molecular Immunology 2016 November
T cell response is crucial to the pathogenesis and progression of rheumatoid arthritis (RA). IL-7/IL-7R axis has significant effect on CD4+ T cell response, including proliferation, differentiation, survival and migration. However, whether blockade of IL-7/IL-7R axis signaling can relieve RA and what is the potential treatment mechanisms are still remaining unclear. In this paper, we established collagen-induced arthritis (CIA) model and observed the effect of IL-7Rα antibody in the treatment of CIA mice. It is demonstrated that IL-7Rα antibody significantly alleviated clinical symptoms of CIA mice, accompanied with reduced CD4+ T cell number in both spleen and joints. Decreased CII-specific CD4+ T cell proliferation and reduced mRNA expression of inflammatory cytokines in IL-7Rα antibody-treated mice were observed. Subsequently, IL-7Rα antibody treatment in vivo downregulated the percentages of Th1 and Th17 cells and the mRNA expression of T-bet and RORγt gene. Moreover, it was found that IL-7 promoted Th1 cell differentiation in vitro, while having no effect on Th17 cell differentiation. In addition, administration of IL-7Rα antibody reduced the mRNA expression of chemokine receptors (CCR7, CXCR3, CXCR6 and XCR1) on CD4+ T cells and chemokine CXCL2 in joints. The results suggested that IL-7Rα antibody treated CIA mice via the inhibition of CII-specific CD4+ T cell proliferation, the reduction of Th1 cell differentiation and the restrain of CD4+ T cell migration to joint lesion site. This investigation indicates that IL-7Rα is a potential therapeutic target for RA.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app