JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

MiR-590-5p inhibits colorectal cancer angiogenesis and metastasis by regulating nuclear factor 90/vascular endothelial growth factor A axis.

Cell Death & Disease 2016 October 14
Altered expression of microRNA-590-5p (miR-590-5p) is involved in tumorigenesis, however, its role in colorectal cancer (CRC) remains to be determined. In this study, we focused on examining the effects of different expression levels of miR-590-5p in cancer cells and normal cells. Results showed that there are lower expression levels of miR-590-5p in human CRC cells and tissues than in normal control cells and tissues. Similarly, in our xenograft mouse model, knockdown of miR-590-5p promoted the progression of CRC. However, an overexpression of miR-590-5p in the mice inhibited angiogenesis, tumor growth, and lung metastasis. Nuclear factor 90 (NF90), a positive regulator of vascular endothelial growth factor (VEGF) mRNA stability and protein synthesis, was shown to be a direct target of miR-590-5p. The overexpression of NF90 restored VEGFA expression and rescued the loss of tumor angiogenesis caused by miR-590-5p. Conversely, the NF90-shRNA attenuated the increased tumor progression caused by the miR-590-5p inhibitor. Clinically, the levels of miR-590-5p were inversely correlated with those of NF90 and VEGFA in CRC tissues. Furthermore, knockdown of NF90 lead to a reduction of pri-miR-590 and an increase of mature miR-590-5p, suggesting a negative feedback loop between miR-590-5p and NF90. Collectively, these data establish miR-590-5p as an anti-onco-miR that inhibits CRC angiogenesis and metastasis through a new mechanism involving NF90/VEGFA signaling axis, highlighting the potential of miR-590-5p as a target for human CRC therapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app