Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Natural product pectolinarigenin inhibits osteosarcoma growth and metastasis via SHP-1-mediated STAT3 signaling inhibition.

Cell Death & Disease 2016 October 14
Signal transducer and activator of transcription 3 (STAT3) has important roles in cancer aggressiveness and has been confirmed as an attractive target for cancer therapy. In this study, we used a dual-luciferase assay to identify that pectolinarigenin inhibited STAT3 activity. Further studies showed pectolinarigenin inhibited constitutive and interleukin-6-induced STAT3 signaling, diminished the accumulation of STAT3 in the nucleus and blocked STAT3 DNA-binding activity in osteosarcoma cells. Mechanism investigations indicated that pectolinarigenin disturbed the STAT3/DNA methyltransferase 1/HDAC1 histone deacetylase 1 complex formation in the promoter region of SHP-1, which reversely mediates STAT3 signaling, leading to the upregulation of SHP-1 expression in osteosarcoma. We also found pectolinarigenin significantly suppressed osteosarcoma cell proliferation, induced apoptosis and reduced the level of STAT3 downstream proteins cyclin D1, Survivin, B-cell lymphoma 2 (Bcl-2), B-cell lymphoma extra-large (Bcl-xl) and myeloid cell leukemia 1 (Mcl-1). In addition, pectolinarigenin inhibited migration, invasion and reserved epithelial-mesenchymal transition (EMT) phenotype in osteosarcoma cells. In spontaneous and patient-derived xenograft models of osteosarcoma, we identified administration (intraperitoneal) of pectolinarigenin (20 mg/kg/2 days and 50 mg/kg/2 days) blocked STAT3 activation and impaired tumor growth and metastasis with superior pharmacodynamic properties. Taken together, our findings demonstrate that pectolinarigenin may be a candidate for osteosarcoma intervention linked to its STAT3 signaling inhibitory activity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app