Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Facile Electrospinning Synthesis of Carbonized Polyvinylpyrrolidone (PVP)/g-C 3 N 4 Hybrid Films for Photoelectrochemical Applications.

The film-forming ability and conductivity of graphitic carbon nitride (g-C3 N4 ) are still unsatisfying, despite much progress having been made in g-C3 N4 -related photocatalysts. New methods for synthesizing g-C3 N4 films coupled with excellent conductive materials are of significance. Herein, a facile method for synthesizing novel carbonized polyvinylpyrrolidone (PVP)/g-C3 N4 (CPVP /g-C3 N4 ) films have been developed through an electrospinning technique. Nanocarbons are generated by in situ carbonization of PVP in the films, which could enhance the photoelectrochemical (PEC) performance of the films due to its good conductivity. The coverage of the CPVP /g-C3 N4 film is good and the films exhibit excellent PEC performance. Furthermore, the thickness of the films can be adjusted by varying the electrospinning time and substantially controlling the PEC performance, of which the photocurrent densities under visible-light irradiation are 3.55, 4.92, and 6.64 μA cm-2 with spinning times of 40, 70, and 120 min, respectively. The photocurrent does not decrease until testing at 4000 s and the coverage is still good after the tests, which indicates the good stability of the films. The excellent PEC performance of the films and facile preparation method enables promising applications in energy and environmental remediation areas.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app