Add like
Add dislike
Add to saved papers

Solving the Hydrogen and Lithium Substructure of Poly(triazine imide)/LiCl Using NMR Crystallography.

Poly(triazine imide) with incorporated lithium chloride has recently attracted substantial attention due to its photocatalytic activity for water splitting. However, an apparent H/Li disorder prevents the delineation of structure-property relationships, for example, with respect to band-gap tuning. Herein, we show that through a combination of one- and two-dimensional, multinuclear solid-state NMR spectroscopy, chemical modelling, automated electron diffraction tomography, and an analysis based on X-ray pair distribution functions, it is finally possible to resolve the H/Li substructure. In each cavity, one hydrogen atom is bound to a bridging nitrogen atom, while a second one protonates a triazine ring. The two lithium ions within each cavity are positioned between two nitrogen atoms of neighbouring triazine rings. The thereby induced local dipole moments cause slight buckling of the framework and lateral displacements of the Cl- ions at a coherence length below 2 nm. Nevertheless, the average structure conforms to space group P21 21 21 . In this way, we demonstrate that, in particular, the above-mentioned techniques allow for smart interplay in delineating the real structure of PTI/LiCl.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app