Add like
Add dislike
Add to saved papers

An automated system for high-throughput generation and optimization of microdroplets.

Biomicrofluidics 2016 September
Microdroplets have been widely used in various biomedical applications. During droplet generation, parameters are manually adjusted to achieve the desired size of droplets. This process is tedious and time-consuming. In this paper, we present a fully automated system for controlling the size of droplets to optimize droplet generation parameters in a microfluidic flow-focusing device. The developed system employed a novel image processing program to measure the diameter of droplets from recorded video clips and correspondingly adjust the flow rates of syringe pumps to obtain the required diameter of droplets. The system was tested to generate phosphate-buffered saline and 8% polyethylene (glycol) diacrylate prepolymer droplets and regulate its diameters at various flow rates. Experimental results demonstrated that the difference between droplet diameters from the image processing and manual measurement is not statistically significant and the results are consistent over five repetitions. Taking the advantages of the accurate image processing method, the size of the droplets can be optimized in a precise and robust manner via automatically adjusting flow rates by the feedback control. The system was used to acquire quantitative data to examine the effects of viscosity and flow rates. Droplet-based experiments can be greatly facilitated by the automatic droplet generation and optimization system. Moreover, the system is able to provide quantitative data for the modelling and application of droplets with various conditions in a high-throughput way.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app