Add like
Add dislike
Add to saved papers

Upregulation of MicroRNA-935 Promotes the Malignant Behaviors of Pancreatic Carcinoma PANC-1 Cells via Targeting Inositol Polyphosphate 4-Phosphatase Type I Gene (INPP4A).

Oncology Research 2017 April 15
Our goal was to determine the roles and regulatory mechanism of microRNA-935 (miR-935) in the progression of pancreatic cancer. The results showed that, compared with normal pancreatic tissues and cells, the expression of miR-935 was markedly upregulated, while INPP4A expression was obviously downregulated in pancreatic cancer tissues and PANC-1 cells. After transfection with the miR-935 inhibitor, miR-935 was significantly suppressed, and suppression of miR-935 significantly inhibited cell proliferation, suppressed cell migration, and induced cell apoptosis of pancreatic cancer cells. Moreover, suppression of miR-935 resulted in a significant increase in the expression of p27. Also, suppression of miR-935 resulted in significant expression changes of EMT markers; E-cadherin was significantly upregulated, while N-cadherin, Snail, and vimentin were markedly downregulated. In addition, after suppression of miR-935, the expression of apoptosis-related proteins was also changed; Bax was significantly upregulated while Bcl-2, procaspase 3, and active caspase 3 were obviously downregulated. Importantly, opposite effects were obtained when miR-935 was overexpressed by transfection with the miR-935 mimic. In addition, INPP4A was a direct target of miR-935. Silencing of INPP4A significantly counteracted the effects of miR-935 suppression on cell migration and apoptosis, as well as the expression changes of the above EMT- and apoptosis-related molecules. Our findings indicate that upregulation of miR-935 may promote pancreatic cancer cell proliferation and migration and inhibit cell apoptosis by targeting INPP4A. miR-935 and INPP4A may serve as potential targets in the therapy of pancreatic cancer.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app