Add like
Add dislike
Add to saved papers

Synergistic Design of Cathode Region for the High-Energy-Density Li-S Batteries.

The synergistic design of cathode region was conducted to minimize the shuttle effect of polysulfides and decrease the loading of inactive components in order to acquire high-energy-density lithium-sulfur (Li-S) batteries. The well-designed cathode region presented two special characteristics: one was the intertwined nanofibers interlayer based on ultrafine TiO2 nanocrystal uniformly embedded within N-doping porous carbon; the other was the lightweight and three-dimensional current collector of fibrous cellulose paper coated by reduced graphene oxide. In consequence, the decent reversible capacity of 874.8 mA h g-1 was acquired at 0.1 C with a capacity retention of 91.83% after 100 cycles. Besides, the satisfactory capacity of 670 mA h g-1 was delivered after 300 cycles at 1 C with the small decay rate of only 0.08%. Because of higher capacity and lower loading of inactive component in cathode region, the energy density of cell increased more than five times compared with unmodified cell. Moreover, to further enhance the energy density, the high-sulfur-loading electrode was fabricated. A good areal capacity of 4.27 mA h cm-2 was retained for the cell with the active material of 4 mg cm-2 and the cycle stability was also well-maintained. In addition, due to the flexibility of interlayer and current collector, Li-S full cell (in pouch cell format) was easily curved. Therefore, the synergistic design for cathode region, which combines the flexible and mass-produced interlayer and current collector together, provides an effective access to Li-S batteries with high energy density and flexibility for practical application.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app