Add like
Add dislike
Add to saved papers

Toward a comprehensive microextraction/determination unit: A chip silicon rubber polyaniline-based system and its direct coupling with gas chromatography and mass spectrometry.

An inexpensive silicon rubber-based chip was constructed by fabricating a triangle-shaped microcanal with a 135 μm width and 234 μm depth by laser ablation technique. The fabricated groove was sealed by a thin glass cover while two pieces of stainless-steel tubing were connected to each side of the canal. Then, a thin polyaniline film was synthesized on the walls of the canal by chemical oxidation using a syringe pump to deliver the relevant reagents. The microfluidic system was eventually connected to a gas chromatography-mass spectrometry. To evaluate the capability of the constructed microfluidic system, it was implemented to the analysis of submilliliter volumes of environmental samples spiked with the trace amounts of some pesticide residues. To show the applicability of the hyphenated system, the extraction/determination of triazines was implemented while only 500 μL sample with the limits of detection ranged from 0.2 to 0.5 ng/mL could be easily achieved. In addition, the influential extraction parameters such as sample volume, flow rate, and sample pH were optimized. Under the optimized conditions, the relative standard deviation values for double-distillated water sample spiked with the selected triazines at 250 ng/mL were 6.5-12.5% (n = 3).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app