Add like
Add dislike
Add to saved papers

Amide compound synthesis by adenylation domain of bacillibactin synthetase.

The adenylation domain of nonribosomal peptide synthetase (NRPS) is responsible for the selective substrate recognition and its activation (as an acyl-O-AMP intermediate) during ATP consumption. DhbE, a stand-alone adenylation domain, acts on an aromatic acid, 2,3-dihydroxybenzoic acid (DHB). This activation is the initial step of the synthesis of bacillibactin that is a high-affinity small-molecule iron chelator also termed siderophore. Subsequently, the activated DHB is transferred and attached covalently to a peptidyl carrier protein domain via a thioester bond. Adenylation domains belong to the superfamily of adenylate-forming enzymes including acetyl-CoA synthetase, acyl-CoA synthetase and firefly luciferase. We previously reported a novel N-acylation reaction for an acyl-CoA synthetase (AcsA) that originally catalyzes the formation of a thioester bond between an acid and CoA, yielding acyl-CoA. This novel reaction was also confirmed for acetyl-CoA synthetase and firefly luciferase, but not yet for an adenylation domain. Here, we for the first time demonstrated the synthesis of N-acyl-L-cysteine by a stand-alone adenylation domain, DhbE. When DHB and L-cysteine were used as substrates of DhbE, N-DHB-L-cysteine was formed. A Vmax value of 0.0156±0.0008 units mg(-1) and Km values of 150±18.3 mM for L-cysteine and 0.0579±0.0260 mM for DHB were obtained in this novel reaction. Furthermore, DhbE synthesized N-benzoyl-L-cysteine when benzoic acid and L-cysteine were used as substrates. Through the N-acylation reaction of DhbE, we also succeeded in the synthesis of N-aromatic acyl compounds that have never previously been reported to be produced by this enzymatic method.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app