Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

New insights into the elucidation of angiotensin-(1-7) in vivo antiarrhythmic effects and its related cellular mechanisms.

Experimental Physiology 2016 December 2
NEW FINDINGS: What is the central question of this study? Recently, there have been many studies exploring the biological effects of angiotensin-(1-7), which has been proved to have cardioprotective actions. However, the effects of this peptide on cardiac arrhythmias in vivo and details regarding its mechanism of action are still undetermined. What is the main finding and its importance? We investigated protective effects of angiotensin-(1-7) on cardiac arrhythmias in vivo, which were not properly explored in terms of cellular mechanisms. To verify effects of angiotensin-(1-7), we used different but complementary experimental approaches. Our data provide new evidence on the cellular mechanism and an in vivo demonstration of the acute antiarrhythmic effect of angiotensin-(1-7). Angiotensin-(1-7) [Ang-(1-7)] has been proved to have cardioprotective effects. However, the effects of this peptide on cardiac arrhythmias in vivo and details regarding its mechanism of action are still undetermined. The aim of this study was to investigate the protective effects of Ang-(1-7) against cardiac arrhythmias, its in vivo effects and cellular mechanism of action. We analysed the ECG upon inducement of arrhythmias in vivo in rats using a combination of halothane and adrenaline. To analyse the effects of Ang-(1-7) on cells, fresh mouse ventricular cardiomyocytes were isolated. The cardiomyocytes were superfused with a solution containing halothane and isoprenaline as a model to induce arrhythmias and used in three different approaches, namely a contractility assay, patch-clamp technique and confocal microscopy. The in vivo ECG showed that the injection of Ang-(1-7) (4 nm i.v.) significantly reduced cardiac arrhythmias [before, 49 ± 43 arrhythmic events versus after Ang-(1-7), 16 ± 14 arrhythmic events]. This effect was blocked by injection of A-779 and l-NAME, without changes in haemodynamic parameters. In addition, contractility experiments showed that Ang-(1-7) significantly decreased the number of arrhythmic events without changing the fractional shortening. This protection was associated with a reduction of the action potential repolarization and membrane hyperpolarization. Moreover, Ang-(1-7) decreased the number of calcium waves without any changes in the amplitude of the calcium transient, despite a significant reduction in the decay rate. Our data provide new evidence on the cellular mechanism together with an in vivo demonstration of the antiarrhythmic effects of Ang-(1-7).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app