JOURNAL ARTICLE
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Role of dynamin-related protein 1-mediated mitochondrial fission in resistance of mouse C2C12 myoblasts to heat injury.

Journal of Physiology 2016 December 16
KEY POINTS: Understanding how skeletal muscles respond to high temperatures may help develop strategies for improving exercise tolerance and preventing heat injury. Mitochondria regulate cell survival by constantly changing their morphology through fusion and fission in response to environmental stimuli. Little is known about the involvement of mitochondrial dynamics in tolerance of skeletal muscle against heat stress. Mild heat acclimation and moderate heat shock appear to have different effects on the mitochondrial morphology and fission protein Drp1 in skeletal muscle cells. Mitochondrial integrity plays a key role in cell survival under heat stress.

ABSTRACT: The regulation of mitochondrial morphology is closely coupled to cell survival during stress. We examined changes in the mitochondrial morphology of mouse C2C12 skeletal muscle cells in response to heat acclimation and heat shock exposure. Acclimated cells showed a greater survival rate during heat shock exposure than non-acclimated cells, and were characterized by long interconnected mitochondria and reduced expression of dynamin-related protein 1 (Drp1) for their mitochondrial fractions. Exposure of C2C12 muscle cells to heat shock led to apoptotic death featuring activation of caspase 3/7, release of cytochrome c and loss of cell membrane integrity. Heat shock also caused excessive mitochondrial fragmentation, loss of mitochondrial membrane potential and production of reactive oxygen species in C2C12 cells. Western blot and immunofluorescence image analysis revealed translocation of Drp1 to mitochondria from the cytosol in C2C12 cells exposed to heat shock. Mitochondrial division inhibitor 1 or Drp1 gene silencer reduced mitochondrial fragmentation and increased cell viability during exposure to heat shock. These results suggest that Drp1-dependent mitochondrial fission may regulate susceptibility to heat-induced apoptosis in muscle cells and that Drp1 may serve as a target for the prevention of heat-related injury.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app