Journal Article
Research Support, Non-U.S. Gov't
Review
Add like
Add dislike
Add to saved papers

Methods for High-Throughput RNAi Screening in Drosophila Cells.

RNA interference (RNAi) is a potent tool for perturbation of gene function in model organisms and human cells. In Drosophila, efficient RNAi enables screening approaches for components of cellular processes in vivo and in vitro. In cultured cells, measuring the effect of depleting gene products on a genome-wide scale can systematically associate gene function with diverse processes, such as cell growth and proliferation, signaling and trafficking. Here, we describe methods for RNAi experiments in cultured Drosophila cells with a focus on genome-wide loss-of-function screening. We illustrate the design of long double-stranded RNAs and provide protocols for their production by in vitro transcription and delivery in cell-based assays. Furthermore, we provide methods to fine-tune signaling reporters and high-content microscopy assays for genome-wide screening. Finally, we describe essential steps of high-throughput data analysis and how the experimental set-up can improve data normalization using a genome-wide RNAi screen for Wnt pathway activity data as an example.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app