Add like
Add dislike
Add to saved papers

Misaligned and Polarity-Reversed Faces Determine Face-specific Capacity Limits.

Previous research using flanker paradigms suggests that peripheral distracter faces are automatically processed when participants have to classify a single central familiar target face. These distracter interference effects disappear when the central task contains additional anonymous (non-target) faces that load the search for the face target, but not when the central task contains additional non-face stimuli, suggesting there are face-specific capacity limits in visual processing. Here we tested whether manipulating the format of non-target faces in the search task affected face-specific capacity limits. Experiment 1 replicated earlier findings that a distracter face is processed even in high load conditions when participants looked for a target name of a famous person among additional names (non-targets) in a central search array. Two further experiments show that when targets and non-targets were faces (instead of names), however, distracter interference was eliminated under high load-adding non-target faces to the search array exhausted processing capacity for peripheral faces. The novel finding was that replacing non-target faces with images that consisted of two horizontally misaligned face-parts reduced distracter processing. Similar results were found when the polarity of a non-target face image was reversed. These results indicate that face-specific capacity limits are not determined by the configural properties of face processing, but by face parts.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app