Add like
Add dislike
Add to saved papers

Blood-Brain Barrier Disruption and Neurovascular Unit Dysfunction in Diabetic Mice: Protection with the Mitochondrial Carbonic Anhydrase Inhibitor Topiramate.

All forms of diabetes mellitus are characterized by chronic hyperglycemia, resulting in the development of a number of microvascular and macrovascular pathologies. Diabetes is also associated with changes in brain microvasculature, leading to dysfunction and ultimately disruption of the blood-brain barrier (BBB). These changes are correlated with a decline in cognitive function. In diabetes, BBB damage is associated with increased oxidative stress and reactive oxygen species. This occurs because of the increased oxidative metabolism of glucose caused by hyperglycemia. Decreasing the production of bicarbonate with the use of a mitochondrial carbonic anhydrase inhibitor (mCAi) limits oxidative metabolism and the production of reactive oxygen species. In this study, we have demonstrated that 1) streptozotocin-induced diabetes resulted in BBB disruption, 2) ultrastructural studies showed a breakdown of the BBB and changes to the neurovascular unit (NVU), including a loss of brain pericytes and retraction of astrocytes, the two cell types that maintain the BBB, and 3) treatment with topiramate, a mCAi, attenuated the effects of diabetes on BBB disruption and ultrastructural changes in the neurovascular unit.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app