JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Sequencing-relative to hybridization-based transcriptomics approaches better define Mycobacterium tuberculosis stress-response regulons.

Tuberculosis 2016 December
Mycobacterium tuberculosis (Mtb) infections cause tuberculosis (TB), an infectious disease which causes ∼1.5 million deaths annually. The ability of this pathogen to evade, escape and encounter immune surveillance is fueled by its adaptability. Thus, Mtb induces a transition in its transcriptome in response to environmental changes. Global transcriptome profiling has been key to our understanding of how Mtb responds to the different stress conditions it faces during its life cycle. While this was initially achieved using microarray technology, RNAseq is now widely employed. It is important to understand the correlation between the large amount of microarray based transcriptome data, which continues to shape our understanding of Mtb stress networks, and newer data being generated using RNAseq. We assessed how well the two platforms correlate using three well-defined stress conditions: diamide, hypoxia, and re-aeration. The data used here was generated by different individuals over time using distinct samples, providing a stringent test of platform correlation. While correlation between microarrays and sequencing was high upon diamide treatment, which causes a rapid reprogramming of the transcriptome, RNAseq allowed a better definition of the hypoxic response, characterized by subtle changes in the magnitude of gene-expression. RNAseq also allows for the best cross-platform reproducibility.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app