JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Developing a Rapid Algorithm to Enable Rapid Characterization of Alginate Microcapsules.

The islets of Langerhans are endocrine tissue clusters that secrete hormones that regulate the body's glucose, carbohydrate, and fat metabolism, the most important of which is insulin, a hormone secreted by β-cells within the islets. In certain instances, a person's own immune system attacks and destroys them, leading to the development of type 1 diabetes (T1D), a life-long condition that needs daily insulin administration to maintain health and prolong survival. Islet transplantation is a surgical procedure that has demonstrated the ability to normalize blood sugar levels for up to a few years, but the need for chronic immunosuppression relegates it to a last resort that is often only used sparingly and in seriously ill patients. Islet microencapsulation is a biomedical innovation designed to protect islets from the immune system by coating them with a biocompatible polymer, and this new technology has demonstrated various degrees of success in small- and large-animal studies. This success is significantly impacted by microcapsule morphology and encapsulation efficiency. Since hundreds of thousands of microcapsules are generated during the process, characterization of encapsulated islets without the help of some degree of automation would be difficult, time-consuming, and error prone due to inherent observer bias. We have developed an image analysis algorithm that can analyze hundreds of microencapsulated islets and characterize their size, shape, circularity, and distortion with minimal observer bias. This algorithm can be easily adapted to similar nano- or microencapsulation technologies to implement stricter quality control and improve biomaterial device design and success.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app