Journal Article
Research Support, Non-U.S. Gov't
Review
Add like
Add dislike
Add to saved papers

Conducting polymers with defined micro- or nanostructures for drug delivery.

Biomaterials 2016 December
Conducting polymers (CPs) are redox active materials with tunable electronic and physical properties. The charge of the CP backbone can be manipulated through redox processes, with accompanied movement of ions into and out of the polymer to maintain electrostatic neutrality. CPs with defined micro- or nanostructures have greatly enhanced surface areas, compared to conventionally prepared CPs. The resulting high surface area interface between polymer and liquid media facilities ion exchange and can lead to larger and more rapid responses to redox cycling. CP systems are maturing as platforms for electrically tunable drug delivery. CPs with defined micro- or nanostructures offer the ability to increase the amount of drug that can be delivered whilst enabling systems to be finely tuned to control the extent and rate of drug release. In this review, fabrication approaches to achieve CPs with micro- or nanostructure are outlined followed by a detailed review and discussion of recent advances in the application of the materials for drug delivery.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app